Description: The second of four axioms in the Russell-Bernays axiom system. (Contributed by Anthony Hart, 13-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rb-ax2 | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ ( 𝜓 ∨ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm1.4 | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( 𝜓 ∨ 𝜑 ) ) | |
| 2 | 1 | con3i | ⊢ ( ¬ ( 𝜓 ∨ 𝜑 ) → ¬ ( 𝜑 ∨ 𝜓 ) ) |
| 3 | 2 | con1i | ⊢ ( ¬ ¬ ( 𝜑 ∨ 𝜓 ) → ( 𝜓 ∨ 𝜑 ) ) |
| 4 | 3 | orri | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ ( 𝜓 ∨ 𝜑 ) ) |