Step |
Hyp |
Ref |
Expression |
1 |
|
recbothd.1 |
|- ( ph -> A e. CC ) |
2 |
|
recbothd.2 |
|- ( ph -> A =/= 0 ) |
3 |
|
recbothd.3 |
|- ( ph -> B e. CC ) |
4 |
|
recbothd.4 |
|- ( ph -> B =/= 0 ) |
5 |
|
recbothd.5 |
|- ( ph -> C e. CC ) |
6 |
|
recbothd.6 |
|- ( ph -> C =/= 0 ) |
7 |
|
recbothd.7 |
|- ( ph -> D e. CC ) |
8 |
|
recbothd.8 |
|- ( ph -> D =/= 0 ) |
9 |
1 3 4
|
divcld |
|- ( ph -> ( A / B ) e. CC ) |
10 |
1 3 2 4
|
divne0d |
|- ( ph -> ( A / B ) =/= 0 ) |
11 |
9 10
|
jca |
|- ( ph -> ( ( A / B ) e. CC /\ ( A / B ) =/= 0 ) ) |
12 |
5 7 8
|
divcld |
|- ( ph -> ( C / D ) e. CC ) |
13 |
5 7 6 8
|
divne0d |
|- ( ph -> ( C / D ) =/= 0 ) |
14 |
12 13
|
jca |
|- ( ph -> ( ( C / D ) e. CC /\ ( C / D ) =/= 0 ) ) |
15 |
11 14
|
jca |
|- ( ph -> ( ( ( A / B ) e. CC /\ ( A / B ) =/= 0 ) /\ ( ( C / D ) e. CC /\ ( C / D ) =/= 0 ) ) ) |
16 |
|
rec11 |
|- ( ( ( ( A / B ) e. CC /\ ( A / B ) =/= 0 ) /\ ( ( C / D ) e. CC /\ ( C / D ) =/= 0 ) ) -> ( ( 1 / ( A / B ) ) = ( 1 / ( C / D ) ) <-> ( A / B ) = ( C / D ) ) ) |
17 |
15 16
|
syl |
|- ( ph -> ( ( 1 / ( A / B ) ) = ( 1 / ( C / D ) ) <-> ( A / B ) = ( C / D ) ) ) |
18 |
17
|
bicomd |
|- ( ph -> ( ( A / B ) = ( C / D ) <-> ( 1 / ( A / B ) ) = ( 1 / ( C / D ) ) ) ) |
19 |
1 3 2 4
|
recdivd |
|- ( ph -> ( 1 / ( A / B ) ) = ( B / A ) ) |
20 |
5 7 6 8
|
recdivd |
|- ( ph -> ( 1 / ( C / D ) ) = ( D / C ) ) |
21 |
19 20
|
eqeq12d |
|- ( ph -> ( ( 1 / ( A / B ) ) = ( 1 / ( C / D ) ) <-> ( B / A ) = ( D / C ) ) ) |
22 |
18 21
|
bitrd |
|- ( ph -> ( ( A / B ) = ( C / D ) <-> ( B / A ) = ( D / C ) ) ) |