| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recbothd.1 |
|- ( ph -> A e. CC ) |
| 2 |
|
recbothd.2 |
|- ( ph -> A =/= 0 ) |
| 3 |
|
recbothd.3 |
|- ( ph -> B e. CC ) |
| 4 |
|
recbothd.4 |
|- ( ph -> B =/= 0 ) |
| 5 |
|
recbothd.5 |
|- ( ph -> C e. CC ) |
| 6 |
|
recbothd.6 |
|- ( ph -> C =/= 0 ) |
| 7 |
|
recbothd.7 |
|- ( ph -> D e. CC ) |
| 8 |
|
recbothd.8 |
|- ( ph -> D =/= 0 ) |
| 9 |
1 3 4
|
divcld |
|- ( ph -> ( A / B ) e. CC ) |
| 10 |
1 3 2 4
|
divne0d |
|- ( ph -> ( A / B ) =/= 0 ) |
| 11 |
9 10
|
jca |
|- ( ph -> ( ( A / B ) e. CC /\ ( A / B ) =/= 0 ) ) |
| 12 |
5 7 8
|
divcld |
|- ( ph -> ( C / D ) e. CC ) |
| 13 |
5 7 6 8
|
divne0d |
|- ( ph -> ( C / D ) =/= 0 ) |
| 14 |
12 13
|
jca |
|- ( ph -> ( ( C / D ) e. CC /\ ( C / D ) =/= 0 ) ) |
| 15 |
11 14
|
jca |
|- ( ph -> ( ( ( A / B ) e. CC /\ ( A / B ) =/= 0 ) /\ ( ( C / D ) e. CC /\ ( C / D ) =/= 0 ) ) ) |
| 16 |
|
rec11 |
|- ( ( ( ( A / B ) e. CC /\ ( A / B ) =/= 0 ) /\ ( ( C / D ) e. CC /\ ( C / D ) =/= 0 ) ) -> ( ( 1 / ( A / B ) ) = ( 1 / ( C / D ) ) <-> ( A / B ) = ( C / D ) ) ) |
| 17 |
15 16
|
syl |
|- ( ph -> ( ( 1 / ( A / B ) ) = ( 1 / ( C / D ) ) <-> ( A / B ) = ( C / D ) ) ) |
| 18 |
17
|
bicomd |
|- ( ph -> ( ( A / B ) = ( C / D ) <-> ( 1 / ( A / B ) ) = ( 1 / ( C / D ) ) ) ) |
| 19 |
1 3 2 4
|
recdivd |
|- ( ph -> ( 1 / ( A / B ) ) = ( B / A ) ) |
| 20 |
5 7 6 8
|
recdivd |
|- ( ph -> ( 1 / ( C / D ) ) = ( D / C ) ) |
| 21 |
19 20
|
eqeq12d |
|- ( ph -> ( ( 1 / ( A / B ) ) = ( 1 / ( C / D ) ) <-> ( B / A ) = ( D / C ) ) ) |
| 22 |
18 21
|
bitrd |
|- ( ph -> ( ( A / B ) = ( C / D ) <-> ( B / A ) = ( D / C ) ) ) |