Metamath Proof Explorer


Theorem recoscld

Description: Closure of the cosine function. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis resincld.1
|- ( ph -> A e. RR )
Assertion recoscld
|- ( ph -> ( cos ` A ) e. RR )

Proof

Step Hyp Ref Expression
1 resincld.1
 |-  ( ph -> A e. RR )
2 recoscl
 |-  ( A e. RR -> ( cos ` A ) e. RR )
3 1 2 syl
 |-  ( ph -> ( cos ` A ) e. RR )