Metamath Proof Explorer


Theorem retancld

Description: Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses resincld.1
|- ( ph -> A e. RR )
retancld.2
|- ( ph -> ( cos ` A ) =/= 0 )
Assertion retancld
|- ( ph -> ( tan ` A ) e. RR )

Proof

Step Hyp Ref Expression
1 resincld.1
 |-  ( ph -> A e. RR )
2 retancld.2
 |-  ( ph -> ( cos ` A ) =/= 0 )
3 retancl
 |-  ( ( A e. RR /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) e. RR )
4 1 2 3 syl2anc
 |-  ( ph -> ( tan ` A ) e. RR )