Step |
Hyp |
Ref |
Expression |
1 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
2 |
|
sinval |
|- ( -u A e. CC -> ( sin ` -u A ) = ( ( ( exp ` ( _i x. -u A ) ) - ( exp ` ( -u _i x. -u A ) ) ) / ( 2 x. _i ) ) ) |
3 |
1 2
|
syl |
|- ( A e. CC -> ( sin ` -u A ) = ( ( ( exp ` ( _i x. -u A ) ) - ( exp ` ( -u _i x. -u A ) ) ) / ( 2 x. _i ) ) ) |
4 |
|
sinval |
|- ( A e. CC -> ( sin ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
5 |
4
|
negeqd |
|- ( A e. CC -> -u ( sin ` A ) = -u ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
6 |
|
ax-icn |
|- _i e. CC |
7 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
8 |
6 7
|
mpan |
|- ( A e. CC -> ( _i x. A ) e. CC ) |
9 |
|
efcl |
|- ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
10 |
8 9
|
syl |
|- ( A e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
11 |
|
negicn |
|- -u _i e. CC |
12 |
|
mulcl |
|- ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC ) |
13 |
11 12
|
mpan |
|- ( A e. CC -> ( -u _i x. A ) e. CC ) |
14 |
|
efcl |
|- ( ( -u _i x. A ) e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) |
15 |
13 14
|
syl |
|- ( A e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) |
16 |
10 15
|
subcld |
|- ( A e. CC -> ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC ) |
17 |
|
2mulicn |
|- ( 2 x. _i ) e. CC |
18 |
|
2muline0 |
|- ( 2 x. _i ) =/= 0 |
19 |
|
divneg |
|- ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC /\ ( 2 x. _i ) e. CC /\ ( 2 x. _i ) =/= 0 ) -> -u ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) = ( -u ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
20 |
17 18 19
|
mp3an23 |
|- ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC -> -u ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) = ( -u ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
21 |
16 20
|
syl |
|- ( A e. CC -> -u ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) = ( -u ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
22 |
5 21
|
eqtrd |
|- ( A e. CC -> -u ( sin ` A ) = ( -u ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
23 |
|
mulneg12 |
|- ( ( _i e. CC /\ A e. CC ) -> ( -u _i x. A ) = ( _i x. -u A ) ) |
24 |
6 23
|
mpan |
|- ( A e. CC -> ( -u _i x. A ) = ( _i x. -u A ) ) |
25 |
24
|
eqcomd |
|- ( A e. CC -> ( _i x. -u A ) = ( -u _i x. A ) ) |
26 |
25
|
fveq2d |
|- ( A e. CC -> ( exp ` ( _i x. -u A ) ) = ( exp ` ( -u _i x. A ) ) ) |
27 |
|
mul2neg |
|- ( ( _i e. CC /\ A e. CC ) -> ( -u _i x. -u A ) = ( _i x. A ) ) |
28 |
6 27
|
mpan |
|- ( A e. CC -> ( -u _i x. -u A ) = ( _i x. A ) ) |
29 |
28
|
fveq2d |
|- ( A e. CC -> ( exp ` ( -u _i x. -u A ) ) = ( exp ` ( _i x. A ) ) ) |
30 |
26 29
|
oveq12d |
|- ( A e. CC -> ( ( exp ` ( _i x. -u A ) ) - ( exp ` ( -u _i x. -u A ) ) ) = ( ( exp ` ( -u _i x. A ) ) - ( exp ` ( _i x. A ) ) ) ) |
31 |
10 15
|
negsubdi2d |
|- ( A e. CC -> -u ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) = ( ( exp ` ( -u _i x. A ) ) - ( exp ` ( _i x. A ) ) ) ) |
32 |
30 31
|
eqtr4d |
|- ( A e. CC -> ( ( exp ` ( _i x. -u A ) ) - ( exp ` ( -u _i x. -u A ) ) ) = -u ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) |
33 |
32
|
oveq1d |
|- ( A e. CC -> ( ( ( exp ` ( _i x. -u A ) ) - ( exp ` ( -u _i x. -u A ) ) ) / ( 2 x. _i ) ) = ( -u ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
34 |
22 33
|
eqtr4d |
|- ( A e. CC -> -u ( sin ` A ) = ( ( ( exp ` ( _i x. -u A ) ) - ( exp ` ( -u _i x. -u A ) ) ) / ( 2 x. _i ) ) ) |
35 |
3 34
|
eqtr4d |
|- ( A e. CC -> ( sin ` -u A ) = -u ( sin ` A ) ) |