Metamath Proof Explorer


Theorem sinneg

Description: The sine of a negative is the negative of the sine. (Contributed by NM, 30-Apr-2005)

Ref Expression
Assertion sinneg A sin A = sin A

Proof

Step Hyp Ref Expression
1 negcl A A
2 sinval A sin A = e i A e i A 2 i
3 1 2 syl A sin A = e i A e i A 2 i
4 sinval A sin A = e i A e i A 2 i
5 4 negeqd A sin A = e i A e i A 2 i
6 ax-icn i
7 mulcl i A i A
8 6 7 mpan A i A
9 efcl i A e i A
10 8 9 syl A e i A
11 negicn i
12 mulcl i A i A
13 11 12 mpan A i A
14 efcl i A e i A
15 13 14 syl A e i A
16 10 15 subcld A e i A e i A
17 2mulicn 2 i
18 2muline0 2 i 0
19 divneg e i A e i A 2 i 2 i 0 e i A e i A 2 i = e i A e i A 2 i
20 17 18 19 mp3an23 e i A e i A e i A e i A 2 i = e i A e i A 2 i
21 16 20 syl A e i A e i A 2 i = e i A e i A 2 i
22 5 21 eqtrd A sin A = e i A e i A 2 i
23 mulneg12 i A i A = i A
24 6 23 mpan A i A = i A
25 24 eqcomd A i A = i A
26 25 fveq2d A e i A = e i A
27 mul2neg i A i A = i A
28 6 27 mpan A i A = i A
29 28 fveq2d A e i A = e i A
30 26 29 oveq12d A e i A e i A = e i A e i A
31 10 15 negsubdi2d A e i A e i A = e i A e i A
32 30 31 eqtr4d A e i A e i A = e i A e i A
33 32 oveq1d A e i A e i A 2 i = e i A e i A 2 i
34 22 33 eqtr4d A sin A = e i A e i A 2 i
35 3 34 eqtr4d A sin A = sin A