Metamath Proof Explorer


Theorem 2muline0

Description: ( 2 x. _i ) =/= 0 . (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion 2muline0
|- ( 2 x. _i ) =/= 0

Proof

Step Hyp Ref Expression
1 2cn
 |-  2 e. CC
2 ax-icn
 |-  _i e. CC
3 2ne0
 |-  2 =/= 0
4 ine0
 |-  _i =/= 0
5 1 2 3 4 mulne0i
 |-  ( 2 x. _i ) =/= 0