Metamath Proof Explorer


Theorem 2muline0

Description: ( 2 x. _i ) =/= 0 . (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion 2muline0 ( 2 · i ) ≠ 0

Proof

Step Hyp Ref Expression
1 2cn 2 ∈ ℂ
2 ax-icn i ∈ ℂ
3 2ne0 2 ≠ 0
4 ine0 i ≠ 0
5 1 2 3 4 mulne0i ( 2 · i ) ≠ 0