Metamath Proof Explorer


Theorem mulne0i

Description: The product of two nonzero numbers is nonzero. (Contributed by NM, 15-Feb-1995)

Ref Expression
Hypotheses muln0.1 𝐴 ∈ ℂ
muln0.2 𝐵 ∈ ℂ
muln0.3 𝐴 ≠ 0
muln0.4 𝐵 ≠ 0
Assertion mulne0i ( 𝐴 · 𝐵 ) ≠ 0

Proof

Step Hyp Ref Expression
1 muln0.1 𝐴 ∈ ℂ
2 muln0.2 𝐵 ∈ ℂ
3 muln0.3 𝐴 ≠ 0
4 muln0.4 𝐵 ≠ 0
5 mulne0 ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 · 𝐵 ) ≠ 0 )
6 1 3 2 4 5 mp4an ( 𝐴 · 𝐵 ) ≠ 0