Metamath Proof Explorer
Description: The product of two nonzero numbers is nonzero. (Contributed by NM, 15-Feb-1995)
|
|
Ref |
Expression |
|
Hypotheses |
muln0.1 |
⊢ 𝐴 ∈ ℂ |
|
|
muln0.2 |
⊢ 𝐵 ∈ ℂ |
|
|
muln0.3 |
⊢ 𝐴 ≠ 0 |
|
|
muln0.4 |
⊢ 𝐵 ≠ 0 |
|
Assertion |
mulne0i |
⊢ ( 𝐴 · 𝐵 ) ≠ 0 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
muln0.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
muln0.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
muln0.3 |
⊢ 𝐴 ≠ 0 |
4 |
|
muln0.4 |
⊢ 𝐵 ≠ 0 |
5 |
|
mulne0 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 · 𝐵 ) ≠ 0 ) |
6 |
1 3 2 4 5
|
mp4an |
⊢ ( 𝐴 · 𝐵 ) ≠ 0 |