Metamath Proof Explorer


Theorem 2mulicn

Description: ( 2 x. _i ) e. CC . (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion 2mulicn
|- ( 2 x. _i ) e. CC

Proof

Step Hyp Ref Expression
1 2cn
 |-  2 e. CC
2 ax-icn
 |-  _i e. CC
3 1 2 mulcli
 |-  ( 2 x. _i ) e. CC