Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
2 |
|
efval |
|- ( A e. CC -> ( exp ` A ) = sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) ) ) |
3 |
1 2
|
syl |
|- ( A e. RR -> ( exp ` A ) = sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) ) ) |
4 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
5 |
|
0zd |
|- ( A e. RR -> 0 e. ZZ ) |
6 |
|
eqid |
|- ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
7 |
6
|
eftval |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
8 |
7
|
adantl |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
9 |
|
reeftcl |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. RR ) |
10 |
6
|
efcllem |
|- ( A e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> ) |
11 |
1 10
|
syl |
|- ( A e. RR -> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> ) |
12 |
4 5 8 9 11
|
isumrecl |
|- ( A e. RR -> sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) ) e. RR ) |
13 |
3 12
|
eqeltrd |
|- ( A e. RR -> ( exp ` A ) e. RR ) |