Step |
Hyp |
Ref |
Expression |
1 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
2 |
1
|
3ad2ant1 |
|- ( ( A e. RR+ /\ B e. RR+ /\ B =/= 1 ) -> ( log ` A ) e. RR ) |
3 |
|
relogcl |
|- ( B e. RR+ -> ( log ` B ) e. RR ) |
4 |
3
|
3ad2ant2 |
|- ( ( A e. RR+ /\ B e. RR+ /\ B =/= 1 ) -> ( log ` B ) e. RR ) |
5 |
|
logne0 |
|- ( ( B e. RR+ /\ B =/= 1 ) -> ( log ` B ) =/= 0 ) |
6 |
5
|
3adant1 |
|- ( ( A e. RR+ /\ B e. RR+ /\ B =/= 1 ) -> ( log ` B ) =/= 0 ) |
7 |
2 4 6
|
redivcld |
|- ( ( A e. RR+ /\ B e. RR+ /\ B =/= 1 ) -> ( ( log ` A ) / ( log ` B ) ) e. RR ) |