Metamath Proof Explorer


Theorem reglogcl

Description: General logarithm is a real number. (Contributed by Stefan O'Rear, 19-Sep-2014) (New usage is discouraged.) Use relogbcl instead.

Ref Expression
Assertion reglogcl
|- ( ( A e. RR+ /\ B e. RR+ /\ B =/= 1 ) -> ( ( log ` A ) / ( log ` B ) ) e. RR )

Proof

Step Hyp Ref Expression
1 relogcl
 |-  ( A e. RR+ -> ( log ` A ) e. RR )
2 1 3ad2ant1
 |-  ( ( A e. RR+ /\ B e. RR+ /\ B =/= 1 ) -> ( log ` A ) e. RR )
3 relogcl
 |-  ( B e. RR+ -> ( log ` B ) e. RR )
4 3 3ad2ant2
 |-  ( ( A e. RR+ /\ B e. RR+ /\ B =/= 1 ) -> ( log ` B ) e. RR )
5 logne0
 |-  ( ( B e. RR+ /\ B =/= 1 ) -> ( log ` B ) =/= 0 )
6 5 3adant1
 |-  ( ( A e. RR+ /\ B e. RR+ /\ B =/= 1 ) -> ( log ` B ) =/= 0 )
7 2 4 6 redivcld
 |-  ( ( A e. RR+ /\ B e. RR+ /\ B =/= 1 ) -> ( ( log ` A ) / ( log ` B ) ) e. RR )