| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relogcl |  |-  ( A e. RR+ -> ( log ` A ) e. RR ) | 
						
							| 2 | 1 | 3ad2ant1 |  |-  ( ( A e. RR+ /\ B e. RR+ /\ B =/= 1 ) -> ( log ` A ) e. RR ) | 
						
							| 3 |  | relogcl |  |-  ( B e. RR+ -> ( log ` B ) e. RR ) | 
						
							| 4 | 3 | 3ad2ant2 |  |-  ( ( A e. RR+ /\ B e. RR+ /\ B =/= 1 ) -> ( log ` B ) e. RR ) | 
						
							| 5 |  | logne0 |  |-  ( ( B e. RR+ /\ B =/= 1 ) -> ( log ` B ) =/= 0 ) | 
						
							| 6 | 5 | 3adant1 |  |-  ( ( A e. RR+ /\ B e. RR+ /\ B =/= 1 ) -> ( log ` B ) =/= 0 ) | 
						
							| 7 | 2 4 6 | redivcld |  |-  ( ( A e. RR+ /\ B e. RR+ /\ B =/= 1 ) -> ( ( log ` A ) / ( log ` B ) ) e. RR ) |