Metamath Proof Explorer


Theorem reglogcl

Description: General logarithm is a real number. (Contributed by Stefan O'Rear, 19-Sep-2014) (New usage is discouraged.) Use relogbcl instead.

Ref Expression
Assertion reglogcl A+B+B1logAlogB

Proof

Step Hyp Ref Expression
1 relogcl A+logA
2 1 3ad2ant1 A+B+B1logA
3 relogcl B+logB
4 3 3ad2ant2 A+B+B1logB
5 logne0 B+B1logB0
6 5 3adant1 A+B+B1logB0
7 2 4 6 redivcld A+B+B1logAlogB