Metamath Proof Explorer


Theorem reglogltb

Description: General logarithm preserves "less than". (Contributed by Stefan O'Rear, 19-Sep-2014) (New usage is discouraged.) Use logblt instead.

Ref Expression
Assertion reglogltb A + B + C + 1 < C A < B log A log C < log B log C

Proof

Step Hyp Ref Expression
1 logltb A + B + A < B log A < log B
2 1 adantr A + B + C + 1 < C A < B log A < log B
3 relogcl A + log A
4 3 ad2antrr A + B + C + 1 < C log A
5 relogcl B + log B
6 5 ad2antlr A + B + C + 1 < C log B
7 relogcl C + log C
8 7 ad2antrl A + B + C + 1 < C log C
9 log1 log 1 = 0
10 1rp 1 +
11 logltb 1 + C + 1 < C log 1 < log C
12 10 11 mpan C + 1 < C log 1 < log C
13 12 biimpa C + 1 < C log 1 < log C
14 9 13 eqbrtrrid C + 1 < C 0 < log C
15 14 adantl A + B + C + 1 < C 0 < log C
16 ltdiv1 log A log B log C 0 < log C log A < log B log A log C < log B log C
17 4 6 8 15 16 syl112anc A + B + C + 1 < C log A < log B log A log C < log B log C
18 2 17 bitrd A + B + C + 1 < C A < B log A log C < log B log C