Metamath Proof Explorer


Theorem reglogltb

Description: General logarithm preserves "less than". (Contributed by Stefan O'Rear, 19-Sep-2014) (New usage is discouraged.) Use logblt instead.

Ref Expression
Assertion reglogltb ( ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) ∧ ( 𝐶 ∈ ℝ+ ∧ 1 < 𝐶 ) ) → ( 𝐴 < 𝐵 ↔ ( ( log ‘ 𝐴 ) / ( log ‘ 𝐶 ) ) < ( ( log ‘ 𝐵 ) / ( log ‘ 𝐶 ) ) ) )

Proof

Step Hyp Ref Expression
1 logltb ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) → ( 𝐴 < 𝐵 ↔ ( log ‘ 𝐴 ) < ( log ‘ 𝐵 ) ) )
2 1 adantr ( ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) ∧ ( 𝐶 ∈ ℝ+ ∧ 1 < 𝐶 ) ) → ( 𝐴 < 𝐵 ↔ ( log ‘ 𝐴 ) < ( log ‘ 𝐵 ) ) )
3 relogcl ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ )
4 3 ad2antrr ( ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) ∧ ( 𝐶 ∈ ℝ+ ∧ 1 < 𝐶 ) ) → ( log ‘ 𝐴 ) ∈ ℝ )
5 relogcl ( 𝐵 ∈ ℝ+ → ( log ‘ 𝐵 ) ∈ ℝ )
6 5 ad2antlr ( ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) ∧ ( 𝐶 ∈ ℝ+ ∧ 1 < 𝐶 ) ) → ( log ‘ 𝐵 ) ∈ ℝ )
7 relogcl ( 𝐶 ∈ ℝ+ → ( log ‘ 𝐶 ) ∈ ℝ )
8 7 ad2antrl ( ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) ∧ ( 𝐶 ∈ ℝ+ ∧ 1 < 𝐶 ) ) → ( log ‘ 𝐶 ) ∈ ℝ )
9 log1 ( log ‘ 1 ) = 0
10 1rp 1 ∈ ℝ+
11 logltb ( ( 1 ∈ ℝ+𝐶 ∈ ℝ+ ) → ( 1 < 𝐶 ↔ ( log ‘ 1 ) < ( log ‘ 𝐶 ) ) )
12 10 11 mpan ( 𝐶 ∈ ℝ+ → ( 1 < 𝐶 ↔ ( log ‘ 1 ) < ( log ‘ 𝐶 ) ) )
13 12 biimpa ( ( 𝐶 ∈ ℝ+ ∧ 1 < 𝐶 ) → ( log ‘ 1 ) < ( log ‘ 𝐶 ) )
14 9 13 eqbrtrrid ( ( 𝐶 ∈ ℝ+ ∧ 1 < 𝐶 ) → 0 < ( log ‘ 𝐶 ) )
15 14 adantl ( ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) ∧ ( 𝐶 ∈ ℝ+ ∧ 1 < 𝐶 ) ) → 0 < ( log ‘ 𝐶 ) )
16 ltdiv1 ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ ( log ‘ 𝐵 ) ∈ ℝ ∧ ( ( log ‘ 𝐶 ) ∈ ℝ ∧ 0 < ( log ‘ 𝐶 ) ) ) → ( ( log ‘ 𝐴 ) < ( log ‘ 𝐵 ) ↔ ( ( log ‘ 𝐴 ) / ( log ‘ 𝐶 ) ) < ( ( log ‘ 𝐵 ) / ( log ‘ 𝐶 ) ) ) )
17 4 6 8 15 16 syl112anc ( ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) ∧ ( 𝐶 ∈ ℝ+ ∧ 1 < 𝐶 ) ) → ( ( log ‘ 𝐴 ) < ( log ‘ 𝐵 ) ↔ ( ( log ‘ 𝐴 ) / ( log ‘ 𝐶 ) ) < ( ( log ‘ 𝐵 ) / ( log ‘ 𝐶 ) ) ) )
18 2 17 bitrd ( ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) ∧ ( 𝐶 ∈ ℝ+ ∧ 1 < 𝐶 ) ) → ( 𝐴 < 𝐵 ↔ ( ( log ‘ 𝐴 ) / ( log ‘ 𝐶 ) ) < ( ( log ‘ 𝐵 ) / ( log ‘ 𝐶 ) ) ) )