| Step | Hyp | Ref | Expression | 
						
							| 1 |  | logleb | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐴  ≤  𝐵  ↔  ( log ‘ 𝐴 )  ≤  ( log ‘ 𝐵 ) ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ+ )  ∧  ( 𝐶  ∈  ℝ+  ∧  1  <  𝐶 ) )  →  ( 𝐴  ≤  𝐵  ↔  ( log ‘ 𝐴 )  ≤  ( log ‘ 𝐵 ) ) ) | 
						
							| 3 |  | relogcl | ⊢ ( 𝐴  ∈  ℝ+  →  ( log ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 4 | 3 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ+ )  ∧  ( 𝐶  ∈  ℝ+  ∧  1  <  𝐶 ) )  →  ( log ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 5 |  | relogcl | ⊢ ( 𝐵  ∈  ℝ+  →  ( log ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 6 | 5 | ad2antlr | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ+ )  ∧  ( 𝐶  ∈  ℝ+  ∧  1  <  𝐶 ) )  →  ( log ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 7 |  | relogcl | ⊢ ( 𝐶  ∈  ℝ+  →  ( log ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 8 | 7 | ad2antrl | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ+ )  ∧  ( 𝐶  ∈  ℝ+  ∧  1  <  𝐶 ) )  →  ( log ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 9 |  | log1 | ⊢ ( log ‘ 1 )  =  0 | 
						
							| 10 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 11 |  | logltb | ⊢ ( ( 1  ∈  ℝ+  ∧  𝐶  ∈  ℝ+ )  →  ( 1  <  𝐶  ↔  ( log ‘ 1 )  <  ( log ‘ 𝐶 ) ) ) | 
						
							| 12 | 10 11 | mpan | ⊢ ( 𝐶  ∈  ℝ+  →  ( 1  <  𝐶  ↔  ( log ‘ 1 )  <  ( log ‘ 𝐶 ) ) ) | 
						
							| 13 | 12 | biimpa | ⊢ ( ( 𝐶  ∈  ℝ+  ∧  1  <  𝐶 )  →  ( log ‘ 1 )  <  ( log ‘ 𝐶 ) ) | 
						
							| 14 | 9 13 | eqbrtrrid | ⊢ ( ( 𝐶  ∈  ℝ+  ∧  1  <  𝐶 )  →  0  <  ( log ‘ 𝐶 ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ+ )  ∧  ( 𝐶  ∈  ℝ+  ∧  1  <  𝐶 ) )  →  0  <  ( log ‘ 𝐶 ) ) | 
						
							| 16 |  | lediv1 | ⊢ ( ( ( log ‘ 𝐴 )  ∈  ℝ  ∧  ( log ‘ 𝐵 )  ∈  ℝ  ∧  ( ( log ‘ 𝐶 )  ∈  ℝ  ∧  0  <  ( log ‘ 𝐶 ) ) )  →  ( ( log ‘ 𝐴 )  ≤  ( log ‘ 𝐵 )  ↔  ( ( log ‘ 𝐴 )  /  ( log ‘ 𝐶 ) )  ≤  ( ( log ‘ 𝐵 )  /  ( log ‘ 𝐶 ) ) ) ) | 
						
							| 17 | 4 6 8 15 16 | syl112anc | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ+ )  ∧  ( 𝐶  ∈  ℝ+  ∧  1  <  𝐶 ) )  →  ( ( log ‘ 𝐴 )  ≤  ( log ‘ 𝐵 )  ↔  ( ( log ‘ 𝐴 )  /  ( log ‘ 𝐶 ) )  ≤  ( ( log ‘ 𝐵 )  /  ( log ‘ 𝐶 ) ) ) ) | 
						
							| 18 | 2 17 | bitrd | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ+ )  ∧  ( 𝐶  ∈  ℝ+  ∧  1  <  𝐶 ) )  →  ( 𝐴  ≤  𝐵  ↔  ( ( log ‘ 𝐴 )  /  ( log ‘ 𝐶 ) )  ≤  ( ( log ‘ 𝐵 )  /  ( log ‘ 𝐶 ) ) ) ) |