| Step | Hyp | Ref | Expression | 
						
							| 1 |  | logleb |  |-  ( ( A e. RR+ /\ B e. RR+ ) -> ( A <_ B <-> ( log ` A ) <_ ( log ` B ) ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( ( A e. RR+ /\ B e. RR+ ) /\ ( C e. RR+ /\ 1 < C ) ) -> ( A <_ B <-> ( log ` A ) <_ ( log ` B ) ) ) | 
						
							| 3 |  | relogcl |  |-  ( A e. RR+ -> ( log ` A ) e. RR ) | 
						
							| 4 | 3 | ad2antrr |  |-  ( ( ( A e. RR+ /\ B e. RR+ ) /\ ( C e. RR+ /\ 1 < C ) ) -> ( log ` A ) e. RR ) | 
						
							| 5 |  | relogcl |  |-  ( B e. RR+ -> ( log ` B ) e. RR ) | 
						
							| 6 | 5 | ad2antlr |  |-  ( ( ( A e. RR+ /\ B e. RR+ ) /\ ( C e. RR+ /\ 1 < C ) ) -> ( log ` B ) e. RR ) | 
						
							| 7 |  | relogcl |  |-  ( C e. RR+ -> ( log ` C ) e. RR ) | 
						
							| 8 | 7 | ad2antrl |  |-  ( ( ( A e. RR+ /\ B e. RR+ ) /\ ( C e. RR+ /\ 1 < C ) ) -> ( log ` C ) e. RR ) | 
						
							| 9 |  | log1 |  |-  ( log ` 1 ) = 0 | 
						
							| 10 |  | 1rp |  |-  1 e. RR+ | 
						
							| 11 |  | logltb |  |-  ( ( 1 e. RR+ /\ C e. RR+ ) -> ( 1 < C <-> ( log ` 1 ) < ( log ` C ) ) ) | 
						
							| 12 | 10 11 | mpan |  |-  ( C e. RR+ -> ( 1 < C <-> ( log ` 1 ) < ( log ` C ) ) ) | 
						
							| 13 | 12 | biimpa |  |-  ( ( C e. RR+ /\ 1 < C ) -> ( log ` 1 ) < ( log ` C ) ) | 
						
							| 14 | 9 13 | eqbrtrrid |  |-  ( ( C e. RR+ /\ 1 < C ) -> 0 < ( log ` C ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ( A e. RR+ /\ B e. RR+ ) /\ ( C e. RR+ /\ 1 < C ) ) -> 0 < ( log ` C ) ) | 
						
							| 16 |  | lediv1 |  |-  ( ( ( log ` A ) e. RR /\ ( log ` B ) e. RR /\ ( ( log ` C ) e. RR /\ 0 < ( log ` C ) ) ) -> ( ( log ` A ) <_ ( log ` B ) <-> ( ( log ` A ) / ( log ` C ) ) <_ ( ( log ` B ) / ( log ` C ) ) ) ) | 
						
							| 17 | 4 6 8 15 16 | syl112anc |  |-  ( ( ( A e. RR+ /\ B e. RR+ ) /\ ( C e. RR+ /\ 1 < C ) ) -> ( ( log ` A ) <_ ( log ` B ) <-> ( ( log ` A ) / ( log ` C ) ) <_ ( ( log ` B ) / ( log ` C ) ) ) ) | 
						
							| 18 | 2 17 | bitrd |  |-  ( ( ( A e. RR+ /\ B e. RR+ ) /\ ( C e. RR+ /\ 1 < C ) ) -> ( A <_ B <-> ( ( log ` A ) / ( log ` C ) ) <_ ( ( log ` B ) / ( log ` C ) ) ) ) |