Metamath Proof Explorer


Theorem reglogmul

Description: Multiplication law for general log. (Contributed by Stefan O'Rear, 19-Sep-2014) (New usage is discouraged.) Use relogbmul instead.

Ref Expression
Assertion reglogmul
|- ( ( A e. RR+ /\ B e. RR+ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( ( log ` ( A x. B ) ) / ( log ` C ) ) = ( ( ( log ` A ) / ( log ` C ) ) + ( ( log ` B ) / ( log ` C ) ) ) )

Proof

Step Hyp Ref Expression
1 relogmul
 |-  ( ( A e. RR+ /\ B e. RR+ ) -> ( log ` ( A x. B ) ) = ( ( log ` A ) + ( log ` B ) ) )
2 1 3adant3
 |-  ( ( A e. RR+ /\ B e. RR+ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( log ` ( A x. B ) ) = ( ( log ` A ) + ( log ` B ) ) )
3 2 oveq1d
 |-  ( ( A e. RR+ /\ B e. RR+ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( ( log ` ( A x. B ) ) / ( log ` C ) ) = ( ( ( log ` A ) + ( log ` B ) ) / ( log ` C ) ) )
4 relogcl
 |-  ( A e. RR+ -> ( log ` A ) e. RR )
5 4 recnd
 |-  ( A e. RR+ -> ( log ` A ) e. CC )
6 5 3ad2ant1
 |-  ( ( A e. RR+ /\ B e. RR+ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( log ` A ) e. CC )
7 relogcl
 |-  ( B e. RR+ -> ( log ` B ) e. RR )
8 7 recnd
 |-  ( B e. RR+ -> ( log ` B ) e. CC )
9 8 3ad2ant2
 |-  ( ( A e. RR+ /\ B e. RR+ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( log ` B ) e. CC )
10 relogcl
 |-  ( C e. RR+ -> ( log ` C ) e. RR )
11 10 recnd
 |-  ( C e. RR+ -> ( log ` C ) e. CC )
12 11 adantr
 |-  ( ( C e. RR+ /\ C =/= 1 ) -> ( log ` C ) e. CC )
13 12 3ad2ant3
 |-  ( ( A e. RR+ /\ B e. RR+ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( log ` C ) e. CC )
14 logne0
 |-  ( ( C e. RR+ /\ C =/= 1 ) -> ( log ` C ) =/= 0 )
15 14 3ad2ant3
 |-  ( ( A e. RR+ /\ B e. RR+ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( log ` C ) =/= 0 )
16 6 9 13 15 divdird
 |-  ( ( A e. RR+ /\ B e. RR+ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( ( ( log ` A ) + ( log ` B ) ) / ( log ` C ) ) = ( ( ( log ` A ) / ( log ` C ) ) + ( ( log ` B ) / ( log ` C ) ) ) )
17 3 16 eqtrd
 |-  ( ( A e. RR+ /\ B e. RR+ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( ( log ` ( A x. B ) ) / ( log ` C ) ) = ( ( ( log ` A ) / ( log ` C ) ) + ( ( log ` B ) / ( log ` C ) ) ) )