Step |
Hyp |
Ref |
Expression |
1 |
|
relogmul |
|- ( ( A e. RR+ /\ B e. RR+ ) -> ( log ` ( A x. B ) ) = ( ( log ` A ) + ( log ` B ) ) ) |
2 |
1
|
3adant3 |
|- ( ( A e. RR+ /\ B e. RR+ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( log ` ( A x. B ) ) = ( ( log ` A ) + ( log ` B ) ) ) |
3 |
2
|
oveq1d |
|- ( ( A e. RR+ /\ B e. RR+ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( ( log ` ( A x. B ) ) / ( log ` C ) ) = ( ( ( log ` A ) + ( log ` B ) ) / ( log ` C ) ) ) |
4 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
5 |
4
|
recnd |
|- ( A e. RR+ -> ( log ` A ) e. CC ) |
6 |
5
|
3ad2ant1 |
|- ( ( A e. RR+ /\ B e. RR+ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( log ` A ) e. CC ) |
7 |
|
relogcl |
|- ( B e. RR+ -> ( log ` B ) e. RR ) |
8 |
7
|
recnd |
|- ( B e. RR+ -> ( log ` B ) e. CC ) |
9 |
8
|
3ad2ant2 |
|- ( ( A e. RR+ /\ B e. RR+ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( log ` B ) e. CC ) |
10 |
|
relogcl |
|- ( C e. RR+ -> ( log ` C ) e. RR ) |
11 |
10
|
recnd |
|- ( C e. RR+ -> ( log ` C ) e. CC ) |
12 |
11
|
adantr |
|- ( ( C e. RR+ /\ C =/= 1 ) -> ( log ` C ) e. CC ) |
13 |
12
|
3ad2ant3 |
|- ( ( A e. RR+ /\ B e. RR+ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( log ` C ) e. CC ) |
14 |
|
logne0 |
|- ( ( C e. RR+ /\ C =/= 1 ) -> ( log ` C ) =/= 0 ) |
15 |
14
|
3ad2ant3 |
|- ( ( A e. RR+ /\ B e. RR+ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( log ` C ) =/= 0 ) |
16 |
6 9 13 15
|
divdird |
|- ( ( A e. RR+ /\ B e. RR+ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( ( ( log ` A ) + ( log ` B ) ) / ( log ` C ) ) = ( ( ( log ` A ) / ( log ` C ) ) + ( ( log ` B ) / ( log ` C ) ) ) ) |
17 |
3 16
|
eqtrd |
|- ( ( A e. RR+ /\ B e. RR+ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( ( log ` ( A x. B ) ) / ( log ` C ) ) = ( ( ( log ` A ) / ( log ` C ) ) + ( ( log ` B ) / ( log ` C ) ) ) ) |