| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relogexp |
|- ( ( A e. RR+ /\ N e. ZZ ) -> ( log ` ( A ^ N ) ) = ( N x. ( log ` A ) ) ) |
| 2 |
1
|
3adant3 |
|- ( ( A e. RR+ /\ N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( log ` ( A ^ N ) ) = ( N x. ( log ` A ) ) ) |
| 3 |
2
|
oveq1d |
|- ( ( A e. RR+ /\ N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( ( log ` ( A ^ N ) ) / ( log ` C ) ) = ( ( N x. ( log ` A ) ) / ( log ` C ) ) ) |
| 4 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
| 5 |
4
|
3ad2ant2 |
|- ( ( A e. RR+ /\ N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> N e. CC ) |
| 6 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
| 7 |
6
|
recnd |
|- ( A e. RR+ -> ( log ` A ) e. CC ) |
| 8 |
7
|
3ad2ant1 |
|- ( ( A e. RR+ /\ N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( log ` A ) e. CC ) |
| 9 |
|
relogcl |
|- ( C e. RR+ -> ( log ` C ) e. RR ) |
| 10 |
9
|
recnd |
|- ( C e. RR+ -> ( log ` C ) e. CC ) |
| 11 |
10
|
adantr |
|- ( ( C e. RR+ /\ C =/= 1 ) -> ( log ` C ) e. CC ) |
| 12 |
11
|
3ad2ant3 |
|- ( ( A e. RR+ /\ N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( log ` C ) e. CC ) |
| 13 |
|
logne0 |
|- ( ( C e. RR+ /\ C =/= 1 ) -> ( log ` C ) =/= 0 ) |
| 14 |
13
|
3ad2ant3 |
|- ( ( A e. RR+ /\ N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( log ` C ) =/= 0 ) |
| 15 |
5 8 12 14
|
divassd |
|- ( ( A e. RR+ /\ N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( ( N x. ( log ` A ) ) / ( log ` C ) ) = ( N x. ( ( log ` A ) / ( log ` C ) ) ) ) |
| 16 |
3 15
|
eqtrd |
|- ( ( A e. RR+ /\ N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( ( log ` ( A ^ N ) ) / ( log ` C ) ) = ( N x. ( ( log ` A ) / ( log ` C ) ) ) ) |