| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relogexp | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑁  ∈  ℤ )  →  ( log ‘ ( 𝐴 ↑ 𝑁 ) )  =  ( 𝑁  ·  ( log ‘ 𝐴 ) ) ) | 
						
							| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑁  ∈  ℤ  ∧  ( 𝐶  ∈  ℝ+  ∧  𝐶  ≠  1 ) )  →  ( log ‘ ( 𝐴 ↑ 𝑁 ) )  =  ( 𝑁  ·  ( log ‘ 𝐴 ) ) ) | 
						
							| 3 | 2 | oveq1d | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑁  ∈  ℤ  ∧  ( 𝐶  ∈  ℝ+  ∧  𝐶  ≠  1 ) )  →  ( ( log ‘ ( 𝐴 ↑ 𝑁 ) )  /  ( log ‘ 𝐶 ) )  =  ( ( 𝑁  ·  ( log ‘ 𝐴 ) )  /  ( log ‘ 𝐶 ) ) ) | 
						
							| 4 |  | zcn | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℂ ) | 
						
							| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑁  ∈  ℤ  ∧  ( 𝐶  ∈  ℝ+  ∧  𝐶  ≠  1 ) )  →  𝑁  ∈  ℂ ) | 
						
							| 6 |  | relogcl | ⊢ ( 𝐴  ∈  ℝ+  →  ( log ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 7 | 6 | recnd | ⊢ ( 𝐴  ∈  ℝ+  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑁  ∈  ℤ  ∧  ( 𝐶  ∈  ℝ+  ∧  𝐶  ≠  1 ) )  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 9 |  | relogcl | ⊢ ( 𝐶  ∈  ℝ+  →  ( log ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 10 | 9 | recnd | ⊢ ( 𝐶  ∈  ℝ+  →  ( log ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝐶  ∈  ℝ+  ∧  𝐶  ≠  1 )  →  ( log ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 12 | 11 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑁  ∈  ℤ  ∧  ( 𝐶  ∈  ℝ+  ∧  𝐶  ≠  1 ) )  →  ( log ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 13 |  | logne0 | ⊢ ( ( 𝐶  ∈  ℝ+  ∧  𝐶  ≠  1 )  →  ( log ‘ 𝐶 )  ≠  0 ) | 
						
							| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑁  ∈  ℤ  ∧  ( 𝐶  ∈  ℝ+  ∧  𝐶  ≠  1 ) )  →  ( log ‘ 𝐶 )  ≠  0 ) | 
						
							| 15 | 5 8 12 14 | divassd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑁  ∈  ℤ  ∧  ( 𝐶  ∈  ℝ+  ∧  𝐶  ≠  1 ) )  →  ( ( 𝑁  ·  ( log ‘ 𝐴 ) )  /  ( log ‘ 𝐶 ) )  =  ( 𝑁  ·  ( ( log ‘ 𝐴 )  /  ( log ‘ 𝐶 ) ) ) ) | 
						
							| 16 | 3 15 | eqtrd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑁  ∈  ℤ  ∧  ( 𝐶  ∈  ℝ+  ∧  𝐶  ≠  1 ) )  →  ( ( log ‘ ( 𝐴 ↑ 𝑁 ) )  /  ( log ‘ 𝐶 ) )  =  ( 𝑁  ·  ( ( log ‘ 𝐴 )  /  ( log ‘ 𝐶 ) ) ) ) |