| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relogexp |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( log ‘ ( 𝐴 ↑ 𝑁 ) ) = ( 𝑁 · ( log ‘ 𝐴 ) ) ) |
| 2 |
1
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ∧ ( 𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1 ) ) → ( log ‘ ( 𝐴 ↑ 𝑁 ) ) = ( 𝑁 · ( log ‘ 𝐴 ) ) ) |
| 3 |
2
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ∧ ( 𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1 ) ) → ( ( log ‘ ( 𝐴 ↑ 𝑁 ) ) / ( log ‘ 𝐶 ) ) = ( ( 𝑁 · ( log ‘ 𝐴 ) ) / ( log ‘ 𝐶 ) ) ) |
| 4 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
| 5 |
4
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ∧ ( 𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1 ) ) → 𝑁 ∈ ℂ ) |
| 6 |
|
relogcl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 7 |
6
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ∧ ( 𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1 ) ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 9 |
|
relogcl |
⊢ ( 𝐶 ∈ ℝ+ → ( log ‘ 𝐶 ) ∈ ℝ ) |
| 10 |
9
|
recnd |
⊢ ( 𝐶 ∈ ℝ+ → ( log ‘ 𝐶 ) ∈ ℂ ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1 ) → ( log ‘ 𝐶 ) ∈ ℂ ) |
| 12 |
11
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ∧ ( 𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1 ) ) → ( log ‘ 𝐶 ) ∈ ℂ ) |
| 13 |
|
logne0 |
⊢ ( ( 𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1 ) → ( log ‘ 𝐶 ) ≠ 0 ) |
| 14 |
13
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ∧ ( 𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1 ) ) → ( log ‘ 𝐶 ) ≠ 0 ) |
| 15 |
5 8 12 14
|
divassd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ∧ ( 𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1 ) ) → ( ( 𝑁 · ( log ‘ 𝐴 ) ) / ( log ‘ 𝐶 ) ) = ( 𝑁 · ( ( log ‘ 𝐴 ) / ( log ‘ 𝐶 ) ) ) ) |
| 16 |
3 15
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ∧ ( 𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1 ) ) → ( ( log ‘ ( 𝐴 ↑ 𝑁 ) ) / ( log ‘ 𝐶 ) ) = ( 𝑁 · ( ( log ‘ 𝐴 ) / ( log ‘ 𝐶 ) ) ) ) |