Metamath Proof Explorer


Theorem reglogexp

Description: Power law for general log. (Contributed by Stefan O'Rear, 19-Sep-2014) (New usage is discouraged.) Use relogbzexp instead.

Ref Expression
Assertion reglogexp A+NC+C1logANlogC=NlogAlogC

Proof

Step Hyp Ref Expression
1 relogexp A+NlogAN=NlogA
2 1 3adant3 A+NC+C1logAN=NlogA
3 2 oveq1d A+NC+C1logANlogC=NlogAlogC
4 zcn NN
5 4 3ad2ant2 A+NC+C1N
6 relogcl A+logA
7 6 recnd A+logA
8 7 3ad2ant1 A+NC+C1logA
9 relogcl C+logC
10 9 recnd C+logC
11 10 adantr C+C1logC
12 11 3ad2ant3 A+NC+C1logC
13 logne0 C+C1logC0
14 13 3ad2ant3 A+NC+C1logC0
15 5 8 12 14 divassd A+NC+C1NlogAlogC=NlogAlogC
16 3 15 eqtrd A+NC+C1logANlogC=NlogAlogC