Metamath Proof Explorer


Theorem relogbzexp

Description: Power law for the general logarithm for integer powers: The logarithm of a positive real number to the power of an integer is equal to the product of the exponent and the logarithm of the base of the power. (Contributed by Stefan O'Rear, 19-Sep-2014) (Revised by AV, 9-Jun-2020)

Ref Expression
Assertion relogbzexp B01C+NlogBCN=NlogBC

Proof

Step Hyp Ref Expression
1 rpcn C+C
2 1 adantr C+NC
3 rpne0 C+C0
4 3 adantr C+NC0
5 simpr C+NN
6 2 4 5 cxpexpzd C+NCN=CN
7 6 3adant1 B01C+NCN=CN
8 7 eqcomd B01C+NCN=CN
9 8 oveq2d B01C+NlogBCN=logBCN
10 zre NN
11 relogbreexp B01C+NlogBCN=NlogBC
12 10 11 syl3an3 B01C+NlogBCN=NlogBC
13 9 12 eqtrd B01C+NlogBCN=NlogBC