Metamath Proof Explorer


Theorem relogexp

Description: The natural logarithm of positive A raised to an integer power. Property 4 of Cohen p. 301-302, restricted to natural logarithms and integer powers N . (Contributed by Steve Rodriguez, 25-Nov-2007)

Ref Expression
Assertion relogexp A+NlogAN=NlogA

Proof

Step Hyp Ref Expression
1 relogcl A+logA
2 1 recnd A+logA
3 efexp logANeNlogA=elogAN
4 2 3 sylan A+NeNlogA=elogAN
5 reeflog A+elogA=A
6 5 oveq1d A+elogAN=AN
7 6 adantr A+NelogAN=AN
8 4 7 eqtrd A+NeNlogA=AN
9 8 fveq2d A+NlogeNlogA=logAN
10 zre NN
11 remulcl NlogANlogA
12 10 1 11 syl2anr A+NNlogA
13 relogef NlogAlogeNlogA=NlogA
14 12 13 syl A+NlogeNlogA=NlogA
15 9 14 eqtr3d A+NlogAN=NlogA