Metamath Proof Explorer


Theorem relog

Description: Real part of a logarithm. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion relog AA0logA=logA

Proof

Step Hyp Ref Expression
1 logcl AA0logA
2 1 recld AA0logA
3 relogef logAlogelogA=logA
4 2 3 syl AA0logelogA=logA
5 absef logAelogA=elogA
6 1 5 syl AA0elogA=elogA
7 eflog AA0elogA=A
8 7 fveq2d AA0elogA=A
9 6 8 eqtr3d AA0elogA=A
10 9 fveq2d AA0logelogA=logA
11 4 10 eqtr3d AA0logA=logA