Metamath Proof Explorer


Theorem reglogmul

Description: Multiplication law for general log. (Contributed by Stefan O'Rear, 19-Sep-2014) (New usage is discouraged.) Use relogbmul instead.

Ref Expression
Assertion reglogmul ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+𝐶 ≠ 1 ) ) → ( ( log ‘ ( 𝐴 · 𝐵 ) ) / ( log ‘ 𝐶 ) ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ 𝐶 ) ) + ( ( log ‘ 𝐵 ) / ( log ‘ 𝐶 ) ) ) )

Proof

Step Hyp Ref Expression
1 relogmul ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) → ( log ‘ ( 𝐴 · 𝐵 ) ) = ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) )
2 1 3adant3 ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+𝐶 ≠ 1 ) ) → ( log ‘ ( 𝐴 · 𝐵 ) ) = ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) )
3 2 oveq1d ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+𝐶 ≠ 1 ) ) → ( ( log ‘ ( 𝐴 · 𝐵 ) ) / ( log ‘ 𝐶 ) ) = ( ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) / ( log ‘ 𝐶 ) ) )
4 relogcl ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ )
5 4 recnd ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℂ )
6 5 3ad2ant1 ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+𝐶 ≠ 1 ) ) → ( log ‘ 𝐴 ) ∈ ℂ )
7 relogcl ( 𝐵 ∈ ℝ+ → ( log ‘ 𝐵 ) ∈ ℝ )
8 7 recnd ( 𝐵 ∈ ℝ+ → ( log ‘ 𝐵 ) ∈ ℂ )
9 8 3ad2ant2 ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+𝐶 ≠ 1 ) ) → ( log ‘ 𝐵 ) ∈ ℂ )
10 relogcl ( 𝐶 ∈ ℝ+ → ( log ‘ 𝐶 ) ∈ ℝ )
11 10 recnd ( 𝐶 ∈ ℝ+ → ( log ‘ 𝐶 ) ∈ ℂ )
12 11 adantr ( ( 𝐶 ∈ ℝ+𝐶 ≠ 1 ) → ( log ‘ 𝐶 ) ∈ ℂ )
13 12 3ad2ant3 ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+𝐶 ≠ 1 ) ) → ( log ‘ 𝐶 ) ∈ ℂ )
14 logne0 ( ( 𝐶 ∈ ℝ+𝐶 ≠ 1 ) → ( log ‘ 𝐶 ) ≠ 0 )
15 14 3ad2ant3 ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+𝐶 ≠ 1 ) ) → ( log ‘ 𝐶 ) ≠ 0 )
16 6 9 13 15 divdird ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+𝐶 ≠ 1 ) ) → ( ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) / ( log ‘ 𝐶 ) ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ 𝐶 ) ) + ( ( log ‘ 𝐵 ) / ( log ‘ 𝐶 ) ) ) )
17 3 16 eqtrd ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+𝐶 ≠ 1 ) ) → ( ( log ‘ ( 𝐴 · 𝐵 ) ) / ( log ‘ 𝐶 ) ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ 𝐶 ) ) + ( ( log ‘ 𝐵 ) / ( log ‘ 𝐶 ) ) ) )