| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relogmul |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ ( 𝐴 · 𝐵 ) ) = ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) ) |
| 2 |
1
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1 ) ) → ( log ‘ ( 𝐴 · 𝐵 ) ) = ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) ) |
| 3 |
2
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1 ) ) → ( ( log ‘ ( 𝐴 · 𝐵 ) ) / ( log ‘ 𝐶 ) ) = ( ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) / ( log ‘ 𝐶 ) ) ) |
| 4 |
|
relogcl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 5 |
4
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1 ) ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 7 |
|
relogcl |
⊢ ( 𝐵 ∈ ℝ+ → ( log ‘ 𝐵 ) ∈ ℝ ) |
| 8 |
7
|
recnd |
⊢ ( 𝐵 ∈ ℝ+ → ( log ‘ 𝐵 ) ∈ ℂ ) |
| 9 |
8
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1 ) ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
| 10 |
|
relogcl |
⊢ ( 𝐶 ∈ ℝ+ → ( log ‘ 𝐶 ) ∈ ℝ ) |
| 11 |
10
|
recnd |
⊢ ( 𝐶 ∈ ℝ+ → ( log ‘ 𝐶 ) ∈ ℂ ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1 ) → ( log ‘ 𝐶 ) ∈ ℂ ) |
| 13 |
12
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1 ) ) → ( log ‘ 𝐶 ) ∈ ℂ ) |
| 14 |
|
logne0 |
⊢ ( ( 𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1 ) → ( log ‘ 𝐶 ) ≠ 0 ) |
| 15 |
14
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1 ) ) → ( log ‘ 𝐶 ) ≠ 0 ) |
| 16 |
6 9 13 15
|
divdird |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1 ) ) → ( ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) / ( log ‘ 𝐶 ) ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ 𝐶 ) ) + ( ( log ‘ 𝐵 ) / ( log ‘ 𝐶 ) ) ) ) |
| 17 |
3 16
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1 ) ) → ( ( log ‘ ( 𝐴 · 𝐵 ) ) / ( log ‘ 𝐶 ) ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ 𝐶 ) ) + ( ( log ‘ 𝐵 ) / ( log ‘ 𝐶 ) ) ) ) |