Description: A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011) (Proof shortened by Peter Mazsa, 17-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relcnvtr | |- ( Rel R -> ( ( R o. R ) C_ R <-> ( `' R o. `' R ) C_ `' R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm | |- ( ( Rel R /\ Rel R /\ Rel R ) <-> Rel R ) |
|
| 2 | relcnvtrg | |- ( ( Rel R /\ Rel R /\ Rel R ) -> ( ( R o. R ) C_ R <-> ( `' R o. `' R ) C_ `' R ) ) |
|
| 3 | 1 2 | sylbir | |- ( Rel R -> ( ( R o. R ) C_ R <-> ( `' R o. `' R ) C_ `' R ) ) |