Description: Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reldmghm | |- Rel dom GrpHom |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ghm | |- GrpHom = ( s e. Grp , t e. Grp |-> { g | [. ( Base ` s ) / w ]. ( g : w --> ( Base ` t ) /\ A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) ) } ) |
|
| 2 | 1 | reldmmpo | |- Rel dom GrpHom |