Metamath Proof Explorer


Theorem reldmghm

Description: Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Assertion reldmghm ReldomGrpHom

Proof

Step Hyp Ref Expression
1 df-ghm GrpHom=sGrp,tGrpg|[˙Bases/w]˙g:wBasetxwywgx+sy=gx+tgy
2 1 reldmmpo ReldomGrpHom