Description: The set ( EulerPathsG ) of all Eulerian paths on G is a set of pairs by our definition of an Eulerian path, and so is a relation. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 18-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | releupth | |- Rel ( EulerPaths ` G ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eupth | |- EulerPaths = ( g e. _V |-> { <. f , p >. | ( f ( Trails ` g ) p /\ f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) ) } ) |
|
2 | 1 | relmptopab | |- Rel ( EulerPaths ` G ) |