| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ceupth |  |-  EulerPaths | 
						
							| 1 |  | vg |  |-  g | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vf |  |-  f | 
						
							| 4 |  | vp |  |-  p | 
						
							| 5 | 3 | cv |  |-  f | 
						
							| 6 |  | ctrls |  |-  Trails | 
						
							| 7 | 1 | cv |  |-  g | 
						
							| 8 | 7 6 | cfv |  |-  ( Trails ` g ) | 
						
							| 9 | 4 | cv |  |-  p | 
						
							| 10 | 5 9 8 | wbr |  |-  f ( Trails ` g ) p | 
						
							| 11 |  | cc0 |  |-  0 | 
						
							| 12 |  | cfzo |  |-  ..^ | 
						
							| 13 |  | chash |  |-  # | 
						
							| 14 | 5 13 | cfv |  |-  ( # ` f ) | 
						
							| 15 | 11 14 12 | co |  |-  ( 0 ..^ ( # ` f ) ) | 
						
							| 16 |  | ciedg |  |-  iEdg | 
						
							| 17 | 7 16 | cfv |  |-  ( iEdg ` g ) | 
						
							| 18 | 17 | cdm |  |-  dom ( iEdg ` g ) | 
						
							| 19 | 15 18 5 | wfo |  |-  f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) | 
						
							| 20 | 10 19 | wa |  |-  ( f ( Trails ` g ) p /\ f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) ) | 
						
							| 21 | 20 3 4 | copab |  |-  { <. f , p >. | ( f ( Trails ` g ) p /\ f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) ) } | 
						
							| 22 | 1 2 21 | cmpt |  |-  ( g e. _V |-> { <. f , p >. | ( f ( Trails ` g ) p /\ f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) ) } ) | 
						
							| 23 | 0 22 | wceq |  |-  EulerPaths = ( g e. _V |-> { <. f , p >. | ( f ( Trails ` g ) p /\ f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) ) } ) |