Metamath Proof Explorer


Definition df-eupth

Description: Define the set of all Eulerian paths on an arbitrary graph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 18-Feb-2021)

Ref Expression
Assertion df-eupth EulerPaths=gVfp|fTrailsgpf:0..^fontodomiEdgg

Detailed syntax breakdown

Step Hyp Ref Expression
0 ceupth classEulerPaths
1 vg setvarg
2 cvv classV
3 vf setvarf
4 vp setvarp
5 3 cv setvarf
6 ctrls classTrails
7 1 cv setvarg
8 7 6 cfv classTrailsg
9 4 cv setvarp
10 5 9 8 wbr wfffTrailsgp
11 cc0 class0
12 cfzo class..^
13 chash class.
14 5 13 cfv classf
15 11 14 12 co class0..^f
16 ciedg classiEdg
17 7 16 cfv classiEdgg
18 17 cdm classdomiEdgg
19 15 18 5 wfo wfff:0..^fontodomiEdgg
20 10 19 wa wfffTrailsgpf:0..^fontodomiEdgg
21 20 3 4 copab classfp|fTrailsgpf:0..^fontodomiEdgg
22 1 2 21 cmpt classgVfp|fTrailsgpf:0..^fontodomiEdgg
23 0 22 wceq wffEulerPaths=gVfp|fTrailsgpf:0..^fontodomiEdgg