Metamath Proof Explorer


Theorem relexp0

Description: A relation composed zero times is the (restricted) identity. (Contributed by RP, 22-May-2020)

Ref Expression
Assertion relexp0
|- ( ( R e. V /\ Rel R ) -> ( R ^r 0 ) = ( _I |` U. U. R ) )

Proof

Step Hyp Ref Expression
1 relexp0g
 |-  ( R e. V -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) )
2 relfld
 |-  ( Rel R -> U. U. R = ( dom R u. ran R ) )
3 2 reseq2d
 |-  ( Rel R -> ( _I |` U. U. R ) = ( _I |` ( dom R u. ran R ) ) )
4 3 eqcomd
 |-  ( Rel R -> ( _I |` ( dom R u. ran R ) ) = ( _I |` U. U. R ) )
5 1 4 sylan9eq
 |-  ( ( R e. V /\ Rel R ) -> ( R ^r 0 ) = ( _I |` U. U. R ) )