Description: A relation composed zero times is the (restricted) identity. (Contributed by RP, 22-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relexp0 | |- ( ( R e. V /\ Rel R ) -> ( R ^r 0 ) = ( _I |` U. U. R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relexp0g | |- ( R e. V -> ( R ^r 0 ) = ( _I |` ( dom R u. ran R ) ) ) |
|
| 2 | relfld | |- ( Rel R -> U. U. R = ( dom R u. ran R ) ) |
|
| 3 | 2 | reseq2d | |- ( Rel R -> ( _I |` U. U. R ) = ( _I |` ( dom R u. ran R ) ) ) |
| 4 | 3 | eqcomd | |- ( Rel R -> ( _I |` ( dom R u. ran R ) ) = ( _I |` U. U. R ) ) |
| 5 | 1 4 | sylan9eq | |- ( ( R e. V /\ Rel R ) -> ( R ^r 0 ) = ( _I |` U. U. R ) ) |