Metamath Proof Explorer


Theorem relexp0

Description: A relation composed zero times is the (restricted) identity. (Contributed by RP, 22-May-2020)

Ref Expression
Assertion relexp0 RVRelRRr0=IR

Proof

Step Hyp Ref Expression
1 relexp0g RVRr0=IdomRranR
2 relfld RelRR=domRranR
3 2 reseq2d RelRIR=IdomRranR
4 3 eqcomd RelRIdomRranR=IR
5 1 4 sylan9eq RVRelRRr0=IR