| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relogoprlem.1 |
|- ( ( ( log ` A ) e. CC /\ ( log ` B ) e. CC ) -> ( exp ` ( ( log ` A ) F ( log ` B ) ) ) = ( ( exp ` ( log ` A ) ) G ( exp ` ( log ` B ) ) ) ) |
| 2 |
|
relogoprlem.2 |
|- ( ( ( log ` A ) e. RR /\ ( log ` B ) e. RR ) -> ( ( log ` A ) F ( log ` B ) ) e. RR ) |
| 3 |
|
reeflog |
|- ( A e. RR+ -> ( exp ` ( log ` A ) ) = A ) |
| 4 |
|
reeflog |
|- ( B e. RR+ -> ( exp ` ( log ` B ) ) = B ) |
| 5 |
3 4
|
oveqan12d |
|- ( ( A e. RR+ /\ B e. RR+ ) -> ( ( exp ` ( log ` A ) ) G ( exp ` ( log ` B ) ) ) = ( A G B ) ) |
| 6 |
5
|
fveq2d |
|- ( ( A e. RR+ /\ B e. RR+ ) -> ( log ` ( ( exp ` ( log ` A ) ) G ( exp ` ( log ` B ) ) ) ) = ( log ` ( A G B ) ) ) |
| 7 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
| 8 |
|
relogcl |
|- ( B e. RR+ -> ( log ` B ) e. RR ) |
| 9 |
|
recn |
|- ( ( log ` A ) e. RR -> ( log ` A ) e. CC ) |
| 10 |
|
recn |
|- ( ( log ` B ) e. RR -> ( log ` B ) e. CC ) |
| 11 |
1
|
fveq2d |
|- ( ( ( log ` A ) e. CC /\ ( log ` B ) e. CC ) -> ( log ` ( exp ` ( ( log ` A ) F ( log ` B ) ) ) ) = ( log ` ( ( exp ` ( log ` A ) ) G ( exp ` ( log ` B ) ) ) ) ) |
| 12 |
9 10 11
|
syl2an |
|- ( ( ( log ` A ) e. RR /\ ( log ` B ) e. RR ) -> ( log ` ( exp ` ( ( log ` A ) F ( log ` B ) ) ) ) = ( log ` ( ( exp ` ( log ` A ) ) G ( exp ` ( log ` B ) ) ) ) ) |
| 13 |
|
relogef |
|- ( ( ( log ` A ) F ( log ` B ) ) e. RR -> ( log ` ( exp ` ( ( log ` A ) F ( log ` B ) ) ) ) = ( ( log ` A ) F ( log ` B ) ) ) |
| 14 |
2 13
|
syl |
|- ( ( ( log ` A ) e. RR /\ ( log ` B ) e. RR ) -> ( log ` ( exp ` ( ( log ` A ) F ( log ` B ) ) ) ) = ( ( log ` A ) F ( log ` B ) ) ) |
| 15 |
12 14
|
eqtr3d |
|- ( ( ( log ` A ) e. RR /\ ( log ` B ) e. RR ) -> ( log ` ( ( exp ` ( log ` A ) ) G ( exp ` ( log ` B ) ) ) ) = ( ( log ` A ) F ( log ` B ) ) ) |
| 16 |
7 8 15
|
syl2an |
|- ( ( A e. RR+ /\ B e. RR+ ) -> ( log ` ( ( exp ` ( log ` A ) ) G ( exp ` ( log ` B ) ) ) ) = ( ( log ` A ) F ( log ` B ) ) ) |
| 17 |
6 16
|
eqtr3d |
|- ( ( A e. RR+ /\ B e. RR+ ) -> ( log ` ( A G B ) ) = ( ( log ` A ) F ( log ` B ) ) ) |