Description: A relation-preserving function is a function. (Contributed by Eric Schmidt, 11-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relpf | |- ( H RelPres R , S ( A , B ) -> H : A --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-relp | |- ( H RelPres R , S ( A , B ) <-> ( H : A --> B /\ A. x e. A A. y e. A ( x R y -> ( H ` x ) S ( H ` y ) ) ) ) |
|
| 2 | 1 | simplbi | |- ( H RelPres R , S ( A , B ) -> H : A --> B ) |