Metamath Proof Explorer


Theorem relpf

Description: A relation-preserving function is a function. (Contributed by Eric Schmidt, 11-Oct-2025)

Ref Expression
Assertion relpf ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 df-relp ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ) )
2 1 simplbi ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴𝐵 )