| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cH |
⊢ 𝐻 |
| 1 |
|
cR |
⊢ 𝑅 |
| 2 |
|
cS |
⊢ 𝑆 |
| 3 |
|
cA |
⊢ 𝐴 |
| 4 |
|
cB |
⊢ 𝐵 |
| 5 |
3 4 1 2 0
|
wrelp |
⊢ 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) |
| 6 |
3 4 0
|
wf |
⊢ 𝐻 : 𝐴 ⟶ 𝐵 |
| 7 |
|
vx |
⊢ 𝑥 |
| 8 |
|
vy |
⊢ 𝑦 |
| 9 |
7
|
cv |
⊢ 𝑥 |
| 10 |
8
|
cv |
⊢ 𝑦 |
| 11 |
9 10 1
|
wbr |
⊢ 𝑥 𝑅 𝑦 |
| 12 |
9 0
|
cfv |
⊢ ( 𝐻 ‘ 𝑥 ) |
| 13 |
10 0
|
cfv |
⊢ ( 𝐻 ‘ 𝑦 ) |
| 14 |
12 13 2
|
wbr |
⊢ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) |
| 15 |
11 14
|
wi |
⊢ ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) |
| 16 |
15 8 3
|
wral |
⊢ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) |
| 17 |
16 7 3
|
wral |
⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) |
| 18 |
6 17
|
wa |
⊢ ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 19 |
5 18
|
wb |
⊢ ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) |