Step |
Hyp |
Ref |
Expression |
1 |
|
feq1 |
⊢ ( 𝐻 = 𝐺 → ( 𝐻 : 𝐴 ⟶ 𝐵 ↔ 𝐺 : 𝐴 ⟶ 𝐵 ) ) |
2 |
|
fveq1 |
⊢ ( 𝐻 = 𝐺 → ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
3 |
|
fveq1 |
⊢ ( 𝐻 = 𝐺 → ( 𝐻 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
4 |
2 3
|
breq12d |
⊢ ( 𝐻 = 𝐺 → ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐺 ‘ 𝑥 ) 𝑆 ( 𝐺 ‘ 𝑦 ) ) ) |
5 |
4
|
imbi2d |
⊢ ( 𝐻 = 𝐺 → ( ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( 𝑥 𝑅 𝑦 → ( 𝐺 ‘ 𝑥 ) 𝑆 ( 𝐺 ‘ 𝑦 ) ) ) ) |
6 |
5
|
2ralbidv |
⊢ ( 𝐻 = 𝐺 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐺 ‘ 𝑥 ) 𝑆 ( 𝐺 ‘ 𝑦 ) ) ) ) |
7 |
1 6
|
anbi12d |
⊢ ( 𝐻 = 𝐺 → ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ↔ ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐺 ‘ 𝑥 ) 𝑆 ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
8 |
|
df-relp |
⊢ ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) |
9 |
|
df-relp |
⊢ ( 𝐺 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐺 ‘ 𝑥 ) 𝑆 ( 𝐺 ‘ 𝑦 ) ) ) ) |
10 |
7 8 9
|
3bitr4g |
⊢ ( 𝐻 = 𝐺 → ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐺 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) |