| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relsng |  |-  ( A e. _V -> ( Rel { A } <-> A e. ( _V X. _V ) ) ) | 
						
							| 2 | 1 | biimpcd |  |-  ( Rel { A } -> ( A e. _V -> A e. ( _V X. _V ) ) ) | 
						
							| 3 |  | imor |  |-  ( ( A e. _V -> A e. ( _V X. _V ) ) <-> ( -. A e. _V \/ A e. ( _V X. _V ) ) ) | 
						
							| 4 | 2 3 | sylib |  |-  ( Rel { A } -> ( -. A e. _V \/ A e. ( _V X. _V ) ) ) | 
						
							| 5 |  | snprc |  |-  ( -. A e. _V <-> { A } = (/) ) | 
						
							| 6 |  | rel0 |  |-  Rel (/) | 
						
							| 7 |  | releq |  |-  ( { A } = (/) -> ( Rel { A } <-> Rel (/) ) ) | 
						
							| 8 | 6 7 | mpbiri |  |-  ( { A } = (/) -> Rel { A } ) | 
						
							| 9 | 5 8 | sylbi |  |-  ( -. A e. _V -> Rel { A } ) | 
						
							| 10 |  | relsng |  |-  ( A e. ( _V X. _V ) -> ( Rel { A } <-> A e. ( _V X. _V ) ) ) | 
						
							| 11 | 10 | ibir |  |-  ( A e. ( _V X. _V ) -> Rel { A } ) | 
						
							| 12 | 9 11 | jaoi |  |-  ( ( -. A e. _V \/ A e. ( _V X. _V ) ) -> Rel { A } ) | 
						
							| 13 | 4 12 | impbii |  |-  ( Rel { A } <-> ( -. A e. _V \/ A e. ( _V X. _V ) ) ) |