Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of Quine p. 48. (Contributed by NM, 21-Jun-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velsn | |- ( x e. { A } <-> x = A ) |
|
| 2 | 1 | exbii | |- ( E. x x e. { A } <-> E. x x = A ) |
| 3 | neq0 | |- ( -. { A } = (/) <-> E. x x e. { A } ) |
|
| 4 | isset | |- ( A e. _V <-> E. x x = A ) |
|
| 5 | 2 3 4 | 3bitr4i | |- ( -. { A } = (/) <-> A e. _V ) |
| 6 | 5 | con1bii | |- ( -. A e. _V <-> { A } = (/) ) |