Description: A singleton is nonempty iff its argument is a set. (Contributed by Scott Fenton, 8-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snnzb | |- ( A e. _V <-> { A } =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
|
| 2 | df-ne | |- ( { A } =/= (/) <-> -. { A } = (/) ) |
|
| 3 | 2 | con2bii | |- ( { A } = (/) <-> -. { A } =/= (/) ) |
| 4 | 1 3 | bitri | |- ( -. A e. _V <-> -. { A } =/= (/) ) |
| 5 | 4 | con4bii | |- ( A e. _V <-> { A } =/= (/) ) |