Metamath Proof Explorer


Theorem relssinxpdmrn

Description: Subset of restriction, special case. (Contributed by Peter Mazsa, 10-Apr-2023)

Ref Expression
Assertion relssinxpdmrn
|- ( Rel R -> ( R C_ ( S i^i ( dom R X. ran R ) ) <-> R C_ S ) )

Proof

Step Hyp Ref Expression
1 relssdmrn
 |-  ( Rel R -> R C_ ( dom R X. ran R ) )
2 1 biantrud
 |-  ( Rel R -> ( R C_ S <-> ( R C_ S /\ R C_ ( dom R X. ran R ) ) ) )
3 ssin
 |-  ( ( R C_ S /\ R C_ ( dom R X. ran R ) ) <-> R C_ ( S i^i ( dom R X. ran R ) ) )
4 2 3 bitr2di
 |-  ( Rel R -> ( R C_ ( S i^i ( dom R X. ran R ) ) <-> R C_ S ) )