Description: Subset of restriction, special case. (Contributed by Peter Mazsa, 10-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | relssinxpdmrn | |- ( Rel R -> ( R C_ ( S i^i ( dom R X. ran R ) ) <-> R C_ S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relssdmrn | |- ( Rel R -> R C_ ( dom R X. ran R ) ) |
|
2 | 1 | biantrud | |- ( Rel R -> ( R C_ S <-> ( R C_ S /\ R C_ ( dom R X. ran R ) ) ) ) |
3 | ssin | |- ( ( R C_ S /\ R C_ ( dom R X. ran R ) ) <-> R C_ ( S i^i ( dom R X. ran R ) ) ) |
|
4 | 2 3 | bitr2di | |- ( Rel R -> ( R C_ ( S i^i ( dom R X. ran R ) ) <-> R C_ S ) ) |