Description: Subset of restriction, special case. (Contributed by Peter Mazsa, 10-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relssinxpdmrn | ⊢ ( Rel 𝑅 → ( 𝑅 ⊆ ( 𝑆 ∩ ( dom 𝑅 × ran 𝑅 ) ) ↔ 𝑅 ⊆ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relssdmrn | ⊢ ( Rel 𝑅 → 𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) ) | |
| 2 | 1 | biantrud | ⊢ ( Rel 𝑅 → ( 𝑅 ⊆ 𝑆 ↔ ( 𝑅 ⊆ 𝑆 ∧ 𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) ) ) ) |
| 3 | ssin | ⊢ ( ( 𝑅 ⊆ 𝑆 ∧ 𝑅 ⊆ ( dom 𝑅 × ran 𝑅 ) ) ↔ 𝑅 ⊆ ( 𝑆 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) | |
| 4 | 2 3 | bitr2di | ⊢ ( Rel 𝑅 → ( 𝑅 ⊆ ( 𝑆 ∩ ( dom 𝑅 × ran 𝑅 ) ) ↔ 𝑅 ⊆ 𝑆 ) ) |