| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfrel6 |
⊢ ( Rel 𝑅 ↔ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = 𝑅 ) |
| 2 |
1
|
biimpi |
⊢ ( Rel 𝑅 → ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = 𝑅 ) |
| 3 |
2
|
dmeqd |
⊢ ( Rel 𝑅 → dom ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = dom 𝑅 ) |
| 4 |
2
|
rneqd |
⊢ ( Rel 𝑅 → ran ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = ran 𝑅 ) |
| 5 |
3 4
|
xpeq12d |
⊢ ( Rel 𝑅 → ( dom ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) × ran ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) = ( dom 𝑅 × ran 𝑅 ) ) |
| 6 |
5
|
ineq2d |
⊢ ( Rel 𝑅 → ( 𝑆 ∩ ( dom ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) × ran ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) ) = ( 𝑆 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) |
| 7 |
6
|
sseq2d |
⊢ ( Rel 𝑅 → ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( 𝑆 ∩ ( dom ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) × ran ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) ) ↔ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( 𝑆 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) ) |
| 8 |
|
relxp |
⊢ Rel ( dom 𝑅 × ran 𝑅 ) |
| 9 |
|
relin2 |
⊢ ( Rel ( dom 𝑅 × ran 𝑅 ) → Rel ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) |
| 10 |
|
relssinxpdmrn |
⊢ ( Rel ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) → ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( 𝑆 ∩ ( dom ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) × ran ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) ) ↔ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑆 ) ) |
| 11 |
8 9 10
|
mp2b |
⊢ ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( 𝑆 ∩ ( dom ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) × ran ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) ) ↔ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑆 ) |
| 12 |
2
|
sseq1d |
⊢ ( Rel 𝑅 → ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑆 ↔ 𝑅 ⊆ 𝑆 ) ) |
| 13 |
11 12
|
bitrid |
⊢ ( Rel 𝑅 → ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( 𝑆 ∩ ( dom ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) × ran ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) ) ↔ 𝑅 ⊆ 𝑆 ) ) |
| 14 |
7 13
|
bitr3d |
⊢ ( Rel 𝑅 → ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( 𝑆 ∩ ( dom 𝑅 × ran 𝑅 ) ) ↔ 𝑅 ⊆ 𝑆 ) ) |