Step |
Hyp |
Ref |
Expression |
1 |
|
dmwf |
|- ( R e. U. ( R1 " On ) -> dom R e. U. ( R1 " On ) ) |
2 |
|
rnwf |
|- ( R e. U. ( R1 " On ) -> ran R e. U. ( R1 " On ) ) |
3 |
1 2
|
jca |
|- ( R e. U. ( R1 " On ) -> ( dom R e. U. ( R1 " On ) /\ ran R e. U. ( R1 " On ) ) ) |
4 |
|
xpwf |
|- ( ( dom R e. U. ( R1 " On ) /\ ran R e. U. ( R1 " On ) ) -> ( dom R X. ran R ) e. U. ( R1 " On ) ) |
5 |
|
relssdmrn |
|- ( Rel R -> R C_ ( dom R X. ran R ) ) |
6 |
|
sswf |
|- ( ( ( dom R X. ran R ) e. U. ( R1 " On ) /\ R C_ ( dom R X. ran R ) ) -> R e. U. ( R1 " On ) ) |
7 |
5 6
|
sylan2 |
|- ( ( ( dom R X. ran R ) e. U. ( R1 " On ) /\ Rel R ) -> R e. U. ( R1 " On ) ) |
8 |
7
|
expcom |
|- ( Rel R -> ( ( dom R X. ran R ) e. U. ( R1 " On ) -> R e. U. ( R1 " On ) ) ) |
9 |
4 8
|
syl5 |
|- ( Rel R -> ( ( dom R e. U. ( R1 " On ) /\ ran R e. U. ( R1 " On ) ) -> R e. U. ( R1 " On ) ) ) |
10 |
3 9
|
impbid2 |
|- ( Rel R -> ( R e. U. ( R1 " On ) <-> ( dom R e. U. ( R1 " On ) /\ ran R e. U. ( R1 " On ) ) ) ) |