| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmwf |
|- ( R e. U. ( R1 " On ) -> dom R e. U. ( R1 " On ) ) |
| 2 |
|
rnwf |
|- ( R e. U. ( R1 " On ) -> ran R e. U. ( R1 " On ) ) |
| 3 |
1 2
|
jca |
|- ( R e. U. ( R1 " On ) -> ( dom R e. U. ( R1 " On ) /\ ran R e. U. ( R1 " On ) ) ) |
| 4 |
|
xpwf |
|- ( ( dom R e. U. ( R1 " On ) /\ ran R e. U. ( R1 " On ) ) -> ( dom R X. ran R ) e. U. ( R1 " On ) ) |
| 5 |
|
relssdmrn |
|- ( Rel R -> R C_ ( dom R X. ran R ) ) |
| 6 |
|
sswf |
|- ( ( ( dom R X. ran R ) e. U. ( R1 " On ) /\ R C_ ( dom R X. ran R ) ) -> R e. U. ( R1 " On ) ) |
| 7 |
5 6
|
sylan2 |
|- ( ( ( dom R X. ran R ) e. U. ( R1 " On ) /\ Rel R ) -> R e. U. ( R1 " On ) ) |
| 8 |
7
|
expcom |
|- ( Rel R -> ( ( dom R X. ran R ) e. U. ( R1 " On ) -> R e. U. ( R1 " On ) ) ) |
| 9 |
4 8
|
syl5 |
|- ( Rel R -> ( ( dom R e. U. ( R1 " On ) /\ ran R e. U. ( R1 " On ) ) -> R e. U. ( R1 " On ) ) ) |
| 10 |
3 9
|
impbid2 |
|- ( Rel R -> ( R e. U. ( R1 " On ) <-> ( dom R e. U. ( R1 " On ) /\ ran R e. U. ( R1 " On ) ) ) ) |