Metamath Proof Explorer


Theorem renegeulem

Description: Lemma for renegeu and similar. Remove a change in bound variables from renegeulemv . (Contributed by Steven Nguyen, 28-Jan-2023)

Ref Expression
Hypotheses renegeulemv.b
|- ( ph -> B e. RR )
renegeulemv.1
|- ( ph -> E. y e. RR ( B + y ) = A )
Assertion renegeulem
|- ( ph -> E! y e. RR ( B + y ) = A )

Proof

Step Hyp Ref Expression
1 renegeulemv.b
 |-  ( ph -> B e. RR )
2 renegeulemv.1
 |-  ( ph -> E. y e. RR ( B + y ) = A )
3 1 2 renegeulemv
 |-  ( ph -> E! x e. RR ( B + x ) = A )
4 reurex
 |-  ( E! x e. RR ( B + x ) = A -> E. x e. RR ( B + x ) = A )
5 3 4 syl
 |-  ( ph -> E. x e. RR ( B + x ) = A )
6 1 5 renegeulemv
 |-  ( ph -> E! y e. RR ( B + y ) = A )