Metamath Proof Explorer


Theorem renegeulem

Description: Lemma for renegeu and similar. Remove a change in bound variables from renegeulemv . (Contributed by Steven Nguyen, 28-Jan-2023)

Ref Expression
Hypotheses renegeulemv.b ( 𝜑𝐵 ∈ ℝ )
renegeulemv.1 ( 𝜑 → ∃ 𝑦 ∈ ℝ ( 𝐵 + 𝑦 ) = 𝐴 )
Assertion renegeulem ( 𝜑 → ∃! 𝑦 ∈ ℝ ( 𝐵 + 𝑦 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 renegeulemv.b ( 𝜑𝐵 ∈ ℝ )
2 renegeulemv.1 ( 𝜑 → ∃ 𝑦 ∈ ℝ ( 𝐵 + 𝑦 ) = 𝐴 )
3 1 2 renegeulemv ( 𝜑 → ∃! 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 )
4 reurex ( ∃! 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 → ∃ 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 )
5 3 4 syl ( 𝜑 → ∃ 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 )
6 1 5 renegeulemv ( 𝜑 → ∃! 𝑦 ∈ ℝ ( 𝐵 + 𝑦 ) = 𝐴 )