Step |
Hyp |
Ref |
Expression |
1 |
|
renegeulemv.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
2 |
|
renegeulemv.1 |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ( 𝐵 + 𝑦 ) = 𝐴 ) |
3 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐵 + 𝑦 ) = 𝐴 ) ) → 𝑦 ∈ ℝ ) |
4 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐵 + 𝑦 ) = 𝐴 ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝐵 + 𝑦 ) = 𝐴 ) |
5 |
4
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐵 + 𝑦 ) = 𝐴 ) ) ∧ 𝑥 ∈ ℝ ) → 𝐴 = ( 𝐵 + 𝑦 ) ) |
6 |
5
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐵 + 𝑦 ) = 𝐴 ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐵 + 𝑥 ) = 𝐴 ↔ ( 𝐵 + 𝑥 ) = ( 𝐵 + 𝑦 ) ) ) |
7 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐵 + 𝑦 ) = 𝐴 ) ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
8 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐵 + 𝑦 ) = 𝐴 ) ) ∧ 𝑥 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
9 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐵 + 𝑦 ) = 𝐴 ) ) ∧ 𝑥 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
10 |
|
readdcan |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐵 + 𝑥 ) = ( 𝐵 + 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
11 |
7 8 9 10
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐵 + 𝑦 ) = 𝐴 ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐵 + 𝑥 ) = ( 𝐵 + 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
12 |
6 11
|
bitrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐵 + 𝑦 ) = 𝐴 ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐵 + 𝑥 ) = 𝐴 ↔ 𝑥 = 𝑦 ) ) |
13 |
12
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐵 + 𝑦 ) = 𝐴 ) ) → ∀ 𝑥 ∈ ℝ ( ( 𝐵 + 𝑥 ) = 𝐴 ↔ 𝑥 = 𝑦 ) ) |
14 |
|
reu6i |
⊢ ( ( 𝑦 ∈ ℝ ∧ ∀ 𝑥 ∈ ℝ ( ( 𝐵 + 𝑥 ) = 𝐴 ↔ 𝑥 = 𝑦 ) ) → ∃! 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 ) |
15 |
3 13 14
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐵 + 𝑦 ) = 𝐴 ) ) → ∃! 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 ) |
16 |
2 15
|
rexlimddv |
⊢ ( 𝜑 → ∃! 𝑥 ∈ ℝ ( 𝐵 + 𝑥 ) = 𝐴 ) |