Description: Construct a complex number from its real and imaginary parts. (Contributed by Mario Carneiro, 29-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | recld.1 | |- ( ph -> A e. CC ) |
|
Assertion | replimd | |- ( ph -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recld.1 | |- ( ph -> A e. CC ) |
|
2 | replim | |- ( A e. CC -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
|
3 | 1 2 | syl | |- ( ph -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |