Metamath Proof Explorer


Theorem reprfz1

Description: Corollary of reprinfz1 . (Contributed by Thierry Arnoux, 14-Dec-2021)

Ref Expression
Hypotheses reprfz1.n
|- ( ph -> N e. NN0 )
reprfz1.s
|- ( ph -> S e. NN0 )
Assertion reprfz1
|- ( ph -> ( NN ( repr ` S ) N ) = ( ( 1 ... N ) ( repr ` S ) N ) )

Proof

Step Hyp Ref Expression
1 reprfz1.n
 |-  ( ph -> N e. NN0 )
2 reprfz1.s
 |-  ( ph -> S e. NN0 )
3 ssidd
 |-  ( ph -> NN C_ NN )
4 1 2 3 reprinfz1
 |-  ( ph -> ( NN ( repr ` S ) N ) = ( ( NN i^i ( 1 ... N ) ) ( repr ` S ) N ) )
5 fz1ssnn
 |-  ( 1 ... N ) C_ NN
6 dfss
 |-  ( ( 1 ... N ) C_ NN <-> ( 1 ... N ) = ( ( 1 ... N ) i^i NN ) )
7 5 6 mpbi
 |-  ( 1 ... N ) = ( ( 1 ... N ) i^i NN )
8 incom
 |-  ( ( 1 ... N ) i^i NN ) = ( NN i^i ( 1 ... N ) )
9 7 8 eqtri
 |-  ( 1 ... N ) = ( NN i^i ( 1 ... N ) )
10 9 oveq1i
 |-  ( ( 1 ... N ) ( repr ` S ) N ) = ( ( NN i^i ( 1 ... N ) ) ( repr ` S ) N )
11 4 10 eqtr4di
 |-  ( ph -> ( NN ( repr ` S ) N ) = ( ( 1 ... N ) ( repr ` S ) N ) )